On the Stability of Unconditionally Positive and Linear Invariants Preserving Time Integration Schemes

نویسندگان

چکیده

Higher-order time integration methods that unconditionally preserve the positivity and linear invariants of underlying differential equation system cannot belong to class general methods. This poses a major challenge for stability analysis such since new iterate depends nonlinearly on current iterate. Moreover, systems, existence is always associated with zero eigenvalues, so steady states continuous problem become nonhyperbolic fixed points numerical scheme. Altogether, requires investigation nonlinear iterations. Based center manifold theory maps we present theorem schemes applied problems whose form subspace. provides sufficient conditions both method local convergence iterates state initial value problem. then used prove unconditional MPRK22-family modified Patankar–Runge–Kutta when arbitrary positive conservative systems equations. The theoretical results are confirmed by experiments.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of time planning and task complexity on accuracy of narrative task performance

هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...

Linear Maps Preserving Invariants

Let G ⊂ GL(V ) be a complex reductive group. Let G denote {φ ∈ GL(V ) | p◦φ = p for all p ∈ C[V ]}. We show that, in general, G = G. In case G is the adjoint group of a simple Lie algebra g, we show that G is an order 2 extension of G. We also calculate G for all representations of SL2.

متن کامل

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination

In this paper, a NonStandard Finite Difference (NSFD) scheme is constructed, which can be used to determine numerical solutions for an epidemic model with vaccination. Here the NSFD method is employed to derive a set of difference equations for the epidemic model with vaccination. We show that difference equations have the same dynamics as the original differential system, such as the positivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2022

ISSN: ['0036-1429', '1095-7170']

DOI: https://doi.org/10.1137/22m1480318